技术开发 频道

项目管理手记:DRP项目中的数据治理

三、“数据事故”分析

    为了解决数据事故问题,笔者协调财务、计划、销售、IT等部门成立了专门的“数据治理”项目小组。数据事故,应该是由于数据的素质低劣造成的,根据调查机构Gartner称,《财富》一千家大型企业所持有的数据,有超过四分一是不准确、不完整或重复的,并预期有四分之三的大型企业直到2010年前也不会或难以改善内部数据的素质。 

    其实没有一家企业不受数据素质问题困扰,但就算有公司意识到问题所在,也常常会低估问题的严重性。何况,数据素质会受多个因素影响而变化。因此,要应付这种挑战,一次性的行动难以奏效,企业务必持之以恒,甚至采取能改写企业文化的行动才会有效。 

    Gartner研究显示,良莠不齐的客户数据可造成重大损失,包括流失客户,以及由处理直销邮件不善和错过销售机会所造成的浪费等。现时很多企业亦发现劣质数据不单打击销售及市场推广,更会波及最具策略性的业务活动。后勤部门的运作,例如制定预算、生产及分销也会受到影响。 

    解决劣质数据问题不只只是一个IT的问题。虽然IT有助将之改善,但企业管理才是关键所在,例如企业文化对数据素质就有很大的影响力。 

    数据治理,需要对数据的素质提出一个定义,笔者认为数据素质涵盖以下多方面: 

    •存在——即企业到底有没有某一项数据。 
    •合法性——即该项数据的数值是否符合一个可接受的范围。 
    •一贯性——例如同一项数据不论储存在哪一个地点都有同一数值。 
    •整全性——数据元素与不同数据集之间关系的完整程度。 
    •准确性——该项数据是否能够描述它应表达的东西。 
    •关联性——该项数据能否恰当地支援业务宗旨。 
    •时间性——即该项数据是否能够及时地被反应出来。 

    针对以上数据的素质,再结合DRP系统中的相关模块,对DRP系统中数据问题按模块分别分析。该分析表格如下:

    以上各模块中,达到相应的数据素质目标即为Y,否则为N。经过对DRP系统中的各个模块的数据素质调查发现:数据治理主要针对的是数据的准确性、时间性、关联性。进一步对数据事故的原因分析,发现数据出问题往往是因为对数据的应用不够充分。比如物流配送,根据销售和库存信息来做,首先销售的信息,每天系统里面的销售信息和银行回款对比,有没有差异,没有差异就是对的。第二,配送是根据系统去配。慢慢的精细化,以前可能是粗放的,现在是一个环节套一个环节,根据这个系统来做,慢慢数据就会越来越准确。百分之百的准确不可能,当然也没有必要,因为随便一个环节都有可能出现串码。 

    但如果业务部门发现DRP系统不管用,DRP使用者就会用自己秘密地使用自己“更方便更可靠的工作流程/做法”。而管理层认为既然没有发生什么不妥,也就睁一只眼,闭一只眼。其实,任何绕道DRP系统的工作流程/做法都会产生DRP数据流之外的“数据暗流”。这种“数据暗流”会削弱企业对流程的控制,损害企业对流程的管理和进一步优化,自然DRP系统的数据准确性就更差了。那么,我们又怎样保证及时数据更新和避免绕道DRP的秘密的“更方便更可靠的工作流程/做法”呢?解决方案原则上很简单:持续提高数据准确率,定期维护订单修订等系统参数,以确保DRP产生的数据流与实际运作相符,通过基于DRP的工作流程的改进,禁止任何绕道DRP的行为。 

    同时,借鉴了业内同行的“数据事故”分析方法,可以得到如下的因果图:



    针对上述发现的各种原因,经过进一步的统计与分析,发现主要的问题在审核流程缺失,KPI指标设定不完善、考核与处罚机制没有执行、指定时间内的数据不到位、业务不熟悉、操作不当上。相反,由于系统原因造成的DRP数据错误很少。而像流程原因导致数据错误出现的次数只占20%,但由于流程原因出现的数据错误影响程度最大。而像操作不当、指定时间内的数据不到位的情况出现较频繁,但对数据错误的影响有限。

0
相关文章