技术开发 频道

项目管理手记:DRP项目中的数据治理

二、数据治理的理论及方法

    项目小组总结之后,通过查找相关资料发现:数据治理其实是一种体系,是一个关注于信息系统执行层面的体系,这一体系的目的是整合IT与业务部门的知识和意见,通过一个类似于监督委员会或项目小组的虚拟组织对企业的信息化建设进行全方位的监管,这一组织的基础是企业高层的授权和业务部门与IT部门的建设性合作。 

    从范围来讲,数据治理涵盖了从前端事务处理系统,后端业务数据库到终端的数据分析,从源头到终端再回到源头形成一个闭环负反馈系统(控制理论中趋稳的系统)。从目的来讲,数据治理就是要对数据的获取、处理、使用进行监管(监管就是我们在执行层面对信息系统的负反馈),而监管的职能主要通过以下五个方面的执行力来保证——发现、监督、控制、沟通、整合。 

    1. 发现:即发现问题和差异(Issues & Gaps),这是监管的基本职能。我们一定要在萌芽阶段发现问题和差异,将其扼杀在苗头。那么如何去发现呢? 

    对于待建或在建的系统,要建立专家审核制度,所谓专家包括技术专家和业务专家,如果本组织不具备条件则可以邀请第三方的顾问来参与系统数据的架构和设计决策,但根本原则是任何专家必须是相关领域的专业人士。 

    对于已建成使用的系统,则关键是IT的日常运维工作的规范化,主要包括规范的问题管理(Trouble Management),周期性审计(Periodic Review)。前者是为了文档化各种系统问题和缺陷,以及相应的IT判断和响应;后者是为了及时对系统的问题和缺陷做出归纳总结,找出规律而从根本上解决问题。 

    2. 监督:即持续的保持对业务数据健康状况的跟踪。监督主要通过周期性的数据分析来完成,市场上也有很多自动化的工具可以帮助您方便的对数据的健康状况进行分析。与发现所不同的是,监督是主动的去发掘问题,而且在发现问题后立即采取行动去修正它。 

    3. 控制:即掌握信息系统建设的决策权。任何信息系统的建设、更新升级、大型变更都必须通过数据治理项目小组的审批,极端情况下甚至可以考虑任何数据变更都必须审批。集中化的控制的好处是,首先可以集中技术和业务相关领域的专家的意见,其次可以限制执行层面的IT人员和业务人员的随意性、不严谨性,再次向监管层提供了从全局和长远的角度看系统的机会。 

    4. 交流:即沟通,是跨部门的跨领域的沟通。对传统IT的最大挑战就是跨组织跨领域的沟通交流,而数据治理委员会这样一个跨越了IT部门和业务部门的虚拟组织,通过建立例行的交流机制,保证了信息在整个组织范围内的透明,这种透明性保证了所有参与者的步调一致的,保证了业务数据的一致性。交流渗透在前面所述的四点数据治理活动中,是它们成功的保障。 

    5. 整合:这是我们的目标同时也是解决之道,主要抓住三个方面的整合——信息的整合,资源的整合,能力的整合。通过信息的整合把分散的业务数据整合到一个一致的没有歧义的体系中来;通过资源的整合把企业IT资源集中调配;通过能力的整合,将平台的运算能力,业务数据处理能力集中管理,建立一种集中服务的模式,即提高了硬件利用率、人员工作效率又利于IT对各业务部门服务的成本核算。

0
相关文章