2、多节点多线程环境
测试环境:6台HP刀片机,SequoiaDB/MongoDB为集群模式。
录入场景:每台机器使用5线程本地TCPIP连接(总共30线程),总共插入1亿2千万条记录。
查询场景:每台机器使用5线程本地TCPIP连接(总共30线程),每线程使用集合扫描1亿2千万条记录,返回最后一条。
(1)数据录入
X轴代表每条线程插入的记录总数,Y轴代表数据库单条线程每秒插入记录数量。
(2)数据录入(平均)
Y轴代表数据库单条线程平均每秒插入记录数量。
(3)数据查询
Y轴代表数据库单条线程平均每秒扫描记录数量。
(4)表扫描
X轴代表每条数据库中存在的记录总数,Y轴代表数据库单条线程每秒扫描记录数量。
(5)占用空间
Y轴代表插入1亿2千万条记录后所占用的总的存储空间(单位MB)。
在同等情况下,都采用6个分区和手动分区,MongoDB也禁用了balancer,对MongoDB和SequoiaDB共有特性进行对比测试。从以上测试结果可以看出,SequoiaDB的插入性能在并发情况下也远远优于MongoDB,虽然MongoDB在查询特定记录方面还是略胜一筹,但是从引入全表扫描的结果来看,一旦客户端查询并且取回记录集时,SequoiaDB优势突显。
五、总结
MongoDB和SequoiaDB作为文档型NoSQL的代表,在功能和性能表现上各有千秋。通过本次测试能够看出,MongoDB和SequoiaDB的性能都很强劲,其中SequoiaDB更是表现不俗,相信在不久的将来SequoiaDB能够独当一面,打开企业级NoSQL市场的局面。