技术开发 频道

视觉中国的NoSQL之路:从MySQL到MongoDB

  【IT168 评论】

  起因

  视觉中国网站(www.chinavisual.com)是国内最大的创意人群的专业网站。2009年以前,同很多公司一样,我们的CMS和社区产品都构建于PHP+Nginx+MySQL之上;MySQL使用了Master+Master的部署方案;前端使用自己的PHP框架进行开发;Memcached作为缓存;Nginx进行Web服务和负载均衡;Gearman进行异步任务处理。在传统的基于静态内容(如文章,资讯,帖子)的产品,这个体系运行良好。通过分级的缓存,数据库端实际负载很轻。2009年初,我们进行了新产品的开发。此时,我们遇到了如下一些问题。
 

  用户数据激增:我们的MySQL某个信息表上线1个月的数据就达到千万。我们之前忽略的很多数据,在新形势下需要跟踪记录,这也导致了数据量的激增;

  用户对于信息的实时性要求更高:对信息的响应速度和更新频度就要求更高。简单通过缓存解决的灵丹妙药不复存在;

  对于Scale-out的要求更高:有些创新产品的增长速度是惊人的。因此要求能够无痛的升级扩展,否则一旦停机,那么用户流失的速度也是惊人的;

  大量文件的备份工作:我们面向的是创意人群,产生的内容是以图片为主。需要能够对这些图片及不同尺寸的缩略图进行有效的备份管理。我们之前使用的Linux inotify+rsync的增量备份方案效果不佳;

  需求变化频繁:开发要更加敏捷,开发成本和维护成本要更低,要能够快速地更新进化,新功能要在最短的周期内上线。

  最初,我们试图完全通过优化现有的技术架构来解决以上问题:对数据时效性进一步分级分层缓存,减小缓存粒度;改进缓存更新机制(线上实时和线下异步更新)提高缓存命中率;尝试对业务数据的特点按照水平和垂直进行分表;使用MogileFS进行分布存储;进一步优化MySQL的性能,同时增加MySQL节点等。但很快发现,即便实施了上述方案,也很难完全解决存在的问题:过度依赖Memcached导致数据表面一致性的维护过于复杂,应用程序开发需要很小心,很多时候出现Memcached的失效会瞬间导致后端数据库压力过大;不同类型数据的特点不同,数据量差别也很大;分表的机制和方式在效率平衡上很难取舍;MogileFS对我们而言是脚小鞋大,维护成本远远超过了实际的效益;引入更多的MySQL数据库节点增大了我们的维护量,如何有效监控和管理这些节点又成了新的问题。虽然虚拟化可以解决部分问题,但还是不能令人满意;

  除了MySQL,能否找到一个更为简单、轻便的瑞士军刀呢?我们的目光投向了NoSQL的方案。

  候选方案

  最初,对于NoSQL的候选方案,我依据关注和熟悉程度,并且在甄别和选择合适的方案时特别制定了一些原则:是否节省系统资源,对于CPU等资源是否消耗过大;客户端/API支持,这直接影响应用开发的效率;文档是否齐全,社区是否活跃;部署是否简单;未来扩展能力。按以上几点经过一段测试后,我们候选名单中剩下Redis、MongoDB和Flare。

  Redis对丰富数据类型的操作很吸引人,可以轻松解决一些应用场景,其读写性能也相当高,唯一缺点就是存储能力和内存挂钩,这样如果存储大量的数据需要消耗太多的内存(最新的版本已经不存在这个问题)。

  Flare的集群管理能力令人印象深刻,它可以支持节点的动态部署,支持节点的基于权重的负载均衡,支持数据分区。同时允许存储大的数据,其key的长度也不受Memcached的限制。而这些对于客户端是透明的,客户端使用Memcached协议链接到Flare的proxy节点就可以了。由于使用集群,Flare支持fail-over,当某个数据节点宕掉,对于这个节点的访问都会自动被proxy节点forward到对应的后备节点,恢复后还可以自动同步。Flare的缺点是实际应用案例较少,文档较为简单,目前只在Geek使用。

  以上方案都打算作为一个优化方案,我从未想过完全放弃MySQL。然而,用MongoDB做产品的设计原型后,我彻底被征服了,决定全面从MySQL迁移到MongoDB。

0
相关文章