技术开发 频道

CUDA的Threading:Block和Grid设定

  SM 中的 Warp 和 Block

SM 中的 Warp 和 Block

  CUDA 的 device 实际在执行的时候,会以 Block 为单位,把一个个的 block 分配给 SM 进行运算;而 block 中的 thread,又会以「warp」为单位,把 thread 来做分组计算。目前 CUDA 的 warp 大小都是 32,也就是 32 个 thread 会被群组成一个 warp 来一起执行;同一个 warp 里的 thread,会以不同的数据,执行同样的指令。此外,在 Compute Capability 1.2 的硬件中,还加入了 warp vote 的功能,可以快速的进行 warp 内的简单统计。

  基本上 warp 分组的动作是由 SM 自动进行的,会以连续的方式来做分组。比如说如果有一个 block 里有 128 个 thread 的话,就会被分成四组 warp,第 0-31 个 thread 会是 warp 1、32-63 是 warp 2、64-95 是 warp 3、96-127 是 warp 4。

  而如果 block 里面的 thread 数量不是 32 的倍数,那他会把剩下的 thread 独立成一个 warp;比如说 thread 数目是 66 的话,就会有三个 warp:0-31、32-63、64-65。由于最后一个 warp 里只剩下两个 thread,所以其实在计算时,就相当于浪费了 30 个 thread 的计算能力;这点是在设定 block 中 thread 数量一定要注意的事!

  一个 SM 一次只会执行一个 block 里的一个 warp,但是 SM 不见得会一次就把这个 warp 的所有指令都执行完;当遇到正在执行的 warp 需要等待的时候(例如存取 global memory 就会要等好一段时间),就切换到别的 warp 来继续做运算,藉此避免为了等待而浪费时间。所以理论上效率最好的状况,就是在 SM 中有够多的 warp 可以切换,让在执行的时候,不会有「所有 warp 都要等待」的情形发生;因为当所有的 warp 都要等待时,就会变成 SM 无事可做的状况了~

  下图就是一个 warp 排程的例子。一开始是先执行 thread block 1 的 warp1,而当他执行到第六行指令的时候,因为需要等待,所以就会先切到 thread block 的 warp2 来执行;一直等到存取结束,且刚好有一个 warp 结束时,才继续执行 TB1 warp1 的第七行指令。

 SM 中的 Warp 和 Block

  实际上,warp 也是 CUDA 中,每一个 SM 执行的最小单位;如果 GPU 有 16 组 SM 的话,也就代表他真正在执行的 thread 数目会是 32*16 个。不过由于 CUDA 是要透过 warp 的切换来隐藏 thread 的延迟、等待,来达到大量平行化的目的,所以会用所谓的 active thread 这个名词来代表一个 SM 里同时可以处理的 thread 数目。

  而在 block 的方面,一个 SM 可以同时处理多个 thread block,当其中有 block 的所有 thread 都处理完后,他就会再去找其他还没处理的 block 来处理。假设有 16 个 SM、64 个 block、每个 SM 可以同时处理三个 block 的话,那一开始执行时,device 就会同时处理 48 个 block;而剩下的 16 个 block 则会等 SM 有处理完 block 后,再进到 SM 中处理,直到所有 block 都处理结束。

  为一个多处理器指定了一个或多个要执行的线程块时,它会将其分成warp块,并由SIMT单元进行调度。将块分割为warp的方法总是相同的,每个warp都包含连续的线程,递增线程索引,第一个warp中包含全局线程过索引0-31。每发出一条指令时,SIMT单元都会选择一个已准备好执行的warp块,并将指令发送到该warp块的活动线程。Warp块每次执行一条通用指令,因此在warp块的全部32个线程执行同一条路径时,可达到最高效率。如果一个warp块的线程通过独立于数据的条件分支而分散,warp块将连续执行所使用的各分支路径,而禁用未在此路径上的线程,完成所有路径时,线程重新汇聚到同一执行路径下,其执行时间为各时间总和。分支仅在warp块内出现,不同的warp块总是独立执行的--无论它们执行的是通用的代码路径还是彼此无关的代码路径。

0
相关文章