借助方案脚本和评测结果中的数据,您就可以创建一种转换矩阵。图 6 是在线购物访问的转换矩阵范例。通过查看与脚本范例相关的转换矩阵,可以很容易看出浏览和搜索请求;当用户决定 添加(到购物袋)并付款时,就产生买卖请求。
图 6. 在线购物访问的转换矩阵范例
步骤 3. 分析趋势并设定性能目标
您的网站工作负荷正在不断增长,当前的设计无论有多么优秀都必须改进 — 同时必须改进的还有构成基础结构的软硬件的能力。在这一步骤中,您要分析趋势以确定未来峰值容量的指数,然后为步骤 2 中确定的每种设计设定目标,并采用适用于未来需求的任何新设计。表 3 提供了一个在线购物站点当前以及规划中的评测结果范例。性能目标一般受业务目标推动,例如:缩短对首选客户的响应时间。
表 3. 一个在线购物站点当前和规划中的评测结果
准确预测请求模式的能力是容量规划的重要要求。我们的预测技术部分基于构建一套数学方法和模型,这些方法和模型用来分离并确定网站请求模式中的趋势、相关性、季节效应、随机性以及其他关键行为(请参见参考资料中的 4、6、7 和 8)。例如,这包括与长尾分布组合在一起的分段自回归移动平均 (ARIMA) 的使用。图 7 是准备用于我们的模型的请求模式范例;该图显示了长野奥运会网站 1 小时内每秒接收到的请求数。从这些结果中拟合出的曲线显示在数据点中间。
由于每个关键流量指数都可以在很大的范围内变动,我们使用一套数学方法评估未来请求模式中每种指数的强度,并将其调整到预计的强度(请参阅参考资料中的 4、7 和 8)。然后,我们将这些调整后的数学模型结合在一起,以确定并预测请求模式。通过使用我们的数学方法隔离、确定并预测请求模式中的趋势、相关性、季节效应、随机性和其他关键行为,我们研究出一种一般的方法,这种方法能够比当前采用的其他方法更准确、更有效地预测请求模式。
图 7. 长野奥运会期间一小时内每秒的请求数
我们的方法已被实践证明极为有效,已被用于预测短期和长期的实际站点请求模式。我们特意采用该方法对最近 IBM 主持的体育赛事站点的峰值小时请求容量进行了预测。在过去三年中,我们一直基于网站的请求模式以及 95% 的置信区间来作出评估。在其他方法中,我们采用了一阶变化率方法评估每年的流量密度伸缩因数。我们通过对 1997、1998 和 1999 年的比较得出了指数式增长的趋势。我们还使用 2000 年的预测伸缩因素,并结合我们调整 1999 年峰值小时流量模型的方法,预测出了 2000 年的峰值小时流量模型。结果与我们的预测相符:我们的预测与站点的实际峰值容量非常接近。另外,这些方法在预测将来季节性事件(如圣诞节在线购物高峰)的 请求模式方面也获得了同样的成功。我们还用此方法预测了短期(数天、数周)的请求模式;同样,预测与站点的实际请求模式相当一致。