技术开发 频道

NUMA体系结构详解

  【IT168 技术】OpenStack Kilo增加很多针对NUMA体系结构的增强功能,以下作者详细解析了NUMA体系结构相关知识,以供学习参考。

  1.NUMA的几个概念(Node,socket,core,thread)

  对于socket,core和thread会有不少文章介绍,这里简单说一下,具体参见下图:

NUMA体系结构详解

  一句话总结:socket就是主板上的CPU插槽; Core就是socket里独立的一组程序执行的硬件单元,比如寄存器,计算单元等; Thread:就是超线程hyperthread的概念,逻辑的执行单元,独立的执行上下文,但是共享core内的寄存器和计算单元。

  NUMA体系结构中多了Node的概念,这个概念其实是用来解决core的分组的问题,具体参见下图来理解(图中的OS CPU可以理解thread,那么core就没有在图中画出),从图中可以看出每个Socket里有两个node,共有4个socket,每个 socket 2个node,每个node中有8个thread,总共4(Socket)× 2(Node)× 8 (4core × 2 Thread) = 64个thread。

  另外每个node有自己的内部CPU,总线和内存,同时还可以访问其他node内的内存,NUMA的最大的优势就是可以方便的增加CPU的数量,因为 Node内有自己内部总线,所以增加CPU数量可以通过增加Node的数目来实现,如果单纯的增加CPU的数量,会对总线造成很大的压力,所以UMA结构 不可能支持很多的核。

NUMA体系结构详解
▲《此图出自:NUMA Best Practices for Dell PowerEdge 12th Generation Servers》

  根据上面提到的,由于每个node内部有自己的CPU总线和内存,所以如果一个虚拟机的vCPU跨不同的Node的话,就会导致一个node中的CPU去 访问另外一个node中的内存的情况,这就导致内存访问延迟的增加。在有些特殊场景下,比如NFV环境中,对性能有比较高的要求,就非常需要同一个虚拟机 的vCPU尽量被分配到同一个Node中的pCPU上,所以在OpenStack的Kilo版本中增加了基于NUMA感知的虚拟机调度的特性。

  2.如何查看机器的NUMA拓扑结构

  比较常用的命令就是lscpu,具体输出如下:

dylan@hp3000:~$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48 //共有48个逻辑CPU(threads)
On-line CPU(s) list: 0-47
Thread(s) per core: 2 //每个core有2个threads
Core(s) per socket: 6 //每个socket有6个cores
Socket(s): 4 //共有4个sockets
NUMA node(s): 4 //共有4个NUMA nodes
Vendor ID: GenuineIntel
CPU family: 6
Model: 45
Stepping: 7
CPU MHz: 1200.000
BogoMIPS: 4790.83
Virtualization: VT-x
L1d cache: 32K //L1 data cache 32k
L1i cache: 32K //L1 instruction cache 32k (牛x机器表现,冯诺依曼+哈弗体系结构)
L2 cache: 256K
L3 cache: 15360K
NUMA node0 CPU(s): 0-5,24-29
NUMA node1 CPU(s): 6-11,30-35
NUMA node2 CPU(s): 12-17,36-41
NUMA node3 CPU(s): 18-23,42-47

  从上图输出,可以看出当前机器有4个sockets,每个 sockets包含1个numa node,每个numa node中有6个cores,每个cores包含2个thread,所以总的threads数 量=4(sockets)×1(node)×6(cores)×2(threads)=48.

  另外,也可以通过下面的脚本来打印出当前机器的socket,core和thread的数量。

#!/bin/bash

# Simple print cpu topology
# Author: kodango

function get_nr_processor()
{
    grep '^processor' /proc/cpuinfo | wc -l
}

function get_nr_socket()
{
    grep 'physical id' /proc/cpuinfo | awk -F: '{
            print $2 | "sort -un"}' | wc -l
}

function get_nr_siblings()
{
    grep 'siblings' /proc/cpuinfo | awk -F: '{
            print $2 | "sort -un"}'
}

function get_nr_cores_of_socket()
{
    grep 'cpu cores' /proc/cpuinfo | awk -F: '{
            print $2 | "sort -un"}'
}

echo '===== CPU Topology Table ====='
echo

echo '+--------------+---------+-----------+'
echo '| Processor ID | Core ID | Socket ID |'
echo '+--------------+---------+-----------+'

while read line; do
    if [ -z "$line" ]; then
        printf '| %-12s | %-7s | %-9s |\n' $p_id $c_id $s_id
        echo '+--------------+---------+-----------+'
        continue
    fi

    if echo "$line" | grep -q "^processor"; then
        p_id=`echo "$line" | awk -F: '{print $2}' | tr -d ' '`
    fi

    if echo "$line" | grep -q "^core id"; then
        c_id=`echo "$line" | awk -F: '{print $2}' | tr -d ' '`
    fi

    if echo "$line" | grep -q "^physical id"; then
        s_id=`echo "$line" | awk -F: '{print $2}' | tr -d ' '`
    fi
done < /proc/cpuinfo

echo

awk -F: '{
    if ($1 ~ /processor/) {
        gsub(/ /,"",$2);
        p_id=$2;
    } else if ($1 ~ /physical id/){
        gsub(/ /,"",$2);
        s_id=$2;
        arr[s_id]=arr[s_id] " " p_id
    }
}

END{
    for (i in arr)
        printf "Socket %s:%s\n", i, arr[i];
}' /proc/cpuinfo

echo
echo '===== CPU Info Summary ====='
echo

nr_processor=`get_nr_processor`
echo "Logical processors: $nr_processor"

nr_socket=`get_nr_socket`
echo "Physical socket: $nr_socket"

nr_siblings=`get_nr_siblings`
echo "Siblings in one socket: $nr_siblings"

nr_cores=`get_nr_cores_of_socket`
echo "Cores in one socket: $nr_cores"

let nr_cores*=nr_socket
echo "Cores in total: $nr_cores"

if [ "$nr_cores" = "$nr_processor" ]; then
    echo "Hyper-Threading: off"
else
    echo "Hyper-Threading: on"
fi

echo
echo '===== END ====='

4
相关文章