技术开发 频道

Java游戏开发:有趣的扑克牌建模程序

        【IT168 技术】罗大佑有歌云:“无聊的日子总是会写点无聊的歌曲......”,我不是歌手,我是程序员,于是无聊的日子总是会写点无聊的程序。程序不能太大,不然没有时间完成;程序应该有趣,不然就达不到消磨时间的目的;程序应该有那么一点挑战性,不然即使写完了也没有进步。

  金钩钓鱼游戏是我儿时经常玩的一种扑克牌游戏,规则非常简单,两个玩家,一旦牌发到手里之后,接下来每个人出什么牌基本上已经就定了,玩家没有自己做决策的机会,所以这个游戏很容易用程序自动模拟出来。

  (一)关于金钩钓鱼游戏

  基本规则(简化版):两个玩家(Player),一副扑克(Deck),大小王(Joker)可要可不要,我们的游戏假定包含大小王,洗牌(Shuffle)之后,每个玩家得到同样数目的牌(27张),玩家任何时候不能看自己手里的牌,玩家依次出牌,每次出一张,轮到自己出牌时,抽出自己手中最底下的一张牌放到牌桌(Board)上,牌桌上的牌按照玩家出牌的顺序摆成一条长链。J(钩)是最特殊的一张牌,当某个玩家出到J时,便将牌桌上的所有牌都归为己有,并放到自己牌池的最上面(与出牌时恰恰相反),此即所谓“金钩钓鱼”,此时牌桌清空,再由此玩家重新出牌。另外,当自己出的牌与牌桌上的某张牌点数相同时,便将牌桌中那张牌及其之后的牌都归为己有(包含自己刚出的那张),再由此玩家重新出牌,比如牌桌上的牌为3,7,8,4,9,当某个玩家出了8,便将牌桌上的8,4,9连同自己刚出的8一并收回,派桌上剩下3,7。最后,谁手中的牌最先出完,谁就输了。

  (二)对于一副牌的建模

  由于花色(Suit)对于此游戏并不重要,所以对扑克牌建模时省略了对花色的建模,同样,由于不需要比较大小,牌的点数(Rank)可以用String来表示(其中王用"W"表示)。

Card.java

  package com.thoughtworks.davenkin.simplefishinggame;

  
public class Card {

  
private String rank;

  
public Card(String rank) {

  this.rank
= rank;

  }

  
public String getRank() {

  return rank;

  }

  }

  一副扑克(Deck)由54张牌组成:

Deck.java

  package com.thoughtworks.davenkin.simplefishinggame;

  import java.util.ArrayList;

  import java.util.Collections;

  
public class Deck {

  ArrayList cards
= new ArrayList();

  
public Deck() {

  buildDeck();

  }

  
private void buildDeck() {

  buildNumberCards();

  buildCard(
"J");

  buildCard(
"Q");

  buildCard(
"K");

  buildCard(
"A");

  buildJokerCard();

  }

  
private void buildJokerCard() {

  cards.add(
new Card("W"));

  cards.add(
new Card("W"));

  }

  
private void buildNumberCards() {

  
for (int rank = 2; rank <= 10; rank++) {

  buildCard(rank);

  }

  }

  
private void buildCard(int rank) {

  
for (int index = 1; index <= 4; index++) {

  cards.add(
new Card(String.valueOf(rank)));

  }

  }

  
private void buildCard(String rank) {

  
for (int index = 1; index <= 4; index++) {

  cards.add(
new Card(rank));

  }

  }

  
public ArrayList getCards() {

  return cards;

  }

  
public void shuffle() {

  Collections.shuffle(cards);

  }

  }

 

  Deck不仅包含54张牌,还定义了洗牌(shuffle)等方法。

  (三)对玩家的建模

  玩家(Player)有自己的名字和自己手中所剩的牌,最重要的是出牌(playCard)成员方法:

package com.thoughtworks.davenkin.simplefishinggame;

import java.util.ArrayList;
import java.util.List;

public class Player {
    ArrayList
<Card> cards = new ArrayList<Card>();
    
String name;

    
public Player(String name) {
        this.name
= name;
    }

    
public String getName() {
        return name;
    }

    
public ArrayList<Card> getCards() {
        return cards;
    }

    
public void obtainCards(List<Card> cardsToAdd) {
        cards.addAll(cardsToAdd);
    }

    
public void playCard(Board board) {
        board.addCard(cards.get(
0));
        System.out.println(name
+ " played " + cards.get(0).getRank());
        board.displayCards();
        cards.remove(
0);
    }

    
public void displayCards() {
        System.out.print(
"Cards for " + name + ": ");
        
for (Card card : cards) {
            System.out.print(card.getRank()
+ " ");
        }

        System.out.println();

    }

}

 

  游戏开始需要发牌,专门定义了一个CardDistributor来发牌,每个玩家得到相同数量的牌。当然,发牌动作应该在洗牌之后:

package com.thoughtworks.davenkin.simplefishinggame;

import java.util.List;

public class CardDistributor {

    
public void distributeCards(Deck deck, List<Player> players) {
        
int cardsPerPlayer = deck.getCards().size() / players.size();
        
int startIndex = 0;
        
for (Player player : players) {
            player.obtainCards(deck.getCards().subList(startIndex, cardsPerPlayer
+ startIndex));
            startIndex
+= cardsPerPlayer;
        }
    }
}
${PageNumber}

  玩家在出牌时,需要将自己手中的一张牌转移到牌桌上(Board),而当Player出牌之后,牌桌应该确定是否有将被Player“钓”进的牌,于是在Borad中还定义了getCardsToBeFished方法:

package com.thoughtworks.davenkin.simplefishinggame;

import java.util.ArrayList;
import java.util.List;

public class Board {
ArrayList
<Card> cards = new ArrayList<Card>();

public ArrayList<Card> getCards() {
return cards;
}

public void addCard(Card card) {
cards.add(card);
}

public List<Card> getCardsToBeFished() {
if (cards.size() == 1)
return
null;

List
<Card> cardsToBeFished;
Card lastCard
= cards.get(cards.size() - 1);
if (lastCard.getRank().equals("J")) {
cardsToBeFished
= cards;
}
else {
cardsToBeFished
= getCardsOfRangeFishing(lastCard);
}
return cardsToBeFished;
}

public void displayCards() {
System.out.print(
"Current cards on board:");
for (Card card : cards) {
System.out.print(card.getRank()
+ " ");
}
System.out.println();
}

public void removeFishedCards(List<Card> cardsToBeFished) {
int endIndex = getCards().indexOf(cardsToBeFished.get(0));
ArrayList
<Card> newCards = new ArrayList<Card>();
newCards.addAll(cards.subList(
0, endIndex));
cards
= newCards;
}

private List<Card> getCardsOfRangeFishing(Card lastCard) {
int startIndex = -1;
for (Card card : cards) {
if (card == lastCard)
break;
if (card.getRank().equals(lastCard.getRank())) {
startIndex
= cards.indexOf(card);
}
}

if (startIndex != -1)
return cards.subList(startIndex, cards.indexOf(lastCard)
+ 1);
return
null;
}
}

 

  (四) 对整个游戏的建模

  整个游戏定义了一个FishingManager来集中管理,FishingManager包括所有玩家,牌桌等成员变量。

package com.thoughtworks.davenkin.simplefishinggame;

import java.util.ArrayList;
import java.util.ListIterator;

public class FishingManager implements FishingRuleChecker, AfterPlayListener {
ArrayList
<Player> players = new ArrayList<Player>();
private Player currentPlayer;
Board board;
private ListIterator<Player> iterator;

public FishingManager() {
board
= new Board();
}

private void resetPlayerIterator() {
iterator
= players.listIterator();
}

public void addPlayers(ArrayList<Player> players) {
this.players.addAll(players);
resetPlayerIterator();
}

@Override
public Player nextPlayer() {
if (iterator.hasNext()) {
return iterator.next();
}
resetPlayerIterator();
return nextPlayer();
}

@Override
public Player whoFailed() {
ListIterator
<Player> listIterator = players.listIterator();
while (listIterator.hasNext()) {
Player currentPlayer
= listIterator.next();
if (currentPlayer.getCards().size() == 0)
return currentPlayer;
}

return
null;
}

@Override
public void afterPlay() {
if (board.getCardsToBeFished() == null)
return;
doFish();
nextPlayer();
}

private void doFish() {
System.out.println(currentPlayer.getName()
+ " fished cards");
currentPlayer.obtainCards(board.getCardsToBeFished());
board.removeFishedCards(board.getCardsToBeFished());
currentPlayer.displayCards();
board.displayCards();
}

public void start() {
int count = 0;
while (true) {
currentPlayer
= nextPlayer();
currentPlayer.displayCards();
currentPlayer.playCard(board);
afterPlay();
count
++;
if (whoFailed() != null) {
break;
}
}

System.out.println(whoFailed().getName()
+ " has failed.");
System.out.println(
"Total: " + count + " rounds");
}

public static void main(String[] args) {
FishingManager manager
= new FishingManager();
Player player1
= new Player("Kayla");
Player player2
= new Player("Samuel");
ArrayList
<Player> players = new ArrayList<Player>();
players.add(player1);
players.add(player2);

Deck deck
= new Deck();
deck.shuffle();
CardDistributor distributor
= new CardDistributor();
distributor.distributeCards(deck, players);

manager.addPlayers(players);
manager.start();
}
}

 

  FishingManager还应该包含游戏规则,比如决定输赢和玩家出牌顺序等,于是定义一个游戏规则接口FishingRuleChecker,并使FishingManager实现FishingRuleChecker接口:

package com.thoughtworks.davenkin.simplefishinggame;

public interface FishingRuleChecker {
Player nextPlayer();
Player whoFailed();
}

  同时,当每个玩家出牌之后,FishingManager应该决定是否有鱼上钩,并执行钓鱼操作,于是定义了一个AfterPlayListener接口,FishingManager也实现了

  AfterPlayListener接口:

package com.thoughtworks.davenkin.simplefishinggame;

public interface AfterPlayListener {
public void afterPlay();
}

 

  (五)有趣的现象

  运行FinshingManager便可以自动模拟整个游戏过程,笔者比较感兴趣的是:所有玩家一共出多少手牌之后游戏结束?于是笔者做了10000次模拟试验,得到的结果为:最大14023手,最小66手,平均1303手,请数学高手帮忙证明一下是否有个统计学意义上的期望值。出牌次数分布图如下:


  上图中,横轴为游戏轮次(一共10000次),纵轴为每次游戏所对应的出牌手数。

0
相关文章