技术开发 频道

数据库Infobright的查询优化

  【IT168 技术】前面已经分析了Infobright的构架,简要介绍了Infobright的压缩过程和工作原理。现在来讨论查询优化的问题。

数据库Infobright的查询优化

  (1)配置环境

  在Linux下面,Infobright环境的配置可以根据README里的要求,配置brighthouse.ini文件。

  (2) 选取高效的数据类型

  参见前面章节。

  (3)使用comment lookup

  参见前面章节。

  (4)尽量有序地导入数据

  前面分析过Infobright的构架,每一列分成n个DP,每个DPN列面存储着DP的一些统计信息。有序地导入数据能够使不同的DP的DPN内的数据差异化更明显。比如按时间date顺序导入数据,那么前一个DP的max(date)<=下一个DP的min(date),查询的时候就能够减少可疑DP,提高查询性能。换句话说,有序地导入数据就是使DP内部数据更加集中,而不再那么分散。

  (5)使用高效的查询语句。

  这里涉及的内容比较多了,总结如下:

  尽量不适用or,可以采用in或者union取而代之

  减少IO操作,原因是infobright里面数据是压缩的,解压缩的过程要消耗很多的时间。

  查询的时候尽量条件选择差异化更明显的语句

  Select中尽量使用where中出现的字段。原因是Infobright按照列处理的,每一列都是单独处理的。所以避免使用where中未出现的字段可以得到较好的性能。

  限制在结果中的表的数量,也就是限制select中出现表的数量。

  尽量使用独立的子查询和join操作代替非独立的子查询

  尽量不在where里面使用MySQL函数和类型转换符

  尽量避免会使用MySQL优化器的查询操作

  使用跨越Infobright表和MySQL表的查询操作

  尽量不在group by 里或者子查询里面使用数学操作,如sum(a*b)。

  select里面尽量剔除不要的字段。

  Infobright执行查询语句的时候,大部分的时间都是花在优化阶段。Infobright优化器虽然已经很强大,但是编写查询语句的时候很多的细节问题还是需要程序员注意。

0
相关文章